Search results

Search for "inflammatory response" in Full Text gives 19 result(s) in Beilstein Journal of Nanotechnology.

Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study

  • Nittiya Suwannasom,
  • Netsai Sriaksorn,
  • Chutamas Thepmalee,
  • Krissana Khoothiam,
  • Ausanai Prapan,
  • Hans Bäumler and
  • Chonthida Thephinlap

Beilstein J. Nanotechnol. 2023, 14, 1127–1140, doi:10.3762/bjnano.14.93

Graphical Abstract
  • addition, the removal of sericin, which requires a degumming process, is a prerequisite for using silk cocoons in biomedical applications to reduce the risk of an inflammatory response [18]. However, this degumming process can lead to damage to the silk structure, increase the polydispersity of the silk
PDF
Album
Supp Info
Full Research Paper
Published 21 Nov 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • , proteins, vaccines, and nucleotides [2]. In spite of biodegradability and biocompatibility, some studies have also demonstrated a certain concentration-dependent toxicologic profile including a mild inflammatory response after treatment with PLGA nanoparticles [49]. Some authors have suggested that the
PDF
Album
Review
Published 13 Mar 2023

Stimuli-responsive polypeptide nanogels for trypsin inhibition

  • Petr Šálek,
  • Jana Dvořáková,
  • Sviatoslav Hladysh,
  • Diana Oleshchuk,
  • Ewa Pavlova,
  • Jan Kučka and
  • Vladimír Proks

Beilstein J. Nanotechnol. 2022, 13, 538–548, doi:10.3762/bjnano.13.45

Graphical Abstract
  • of loaded FITC-albumin [18]. Regarding the inhibition of serine proteases and inflammation, AAT, the most abundant inhibitor of serine proteases in human plasma, regulates the proteolytic activity of secreted proteases and is involved in the acute anti-inflammatory response against inflammatory
PDF
Album
Full Research Paper
Published 22 Jun 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • control group [125]. One of the pioneering studies on the pathological complications arising from implanting CNT incorporated alginate hydrogel was carried out by Kawaguchi and co-workers. They reported a mild inflammatory response and non-cytotoxic effects following the implantation of the scaffold in a
  • proliferation and synthesis of the ECM were enhanced. In vivo analysis showed a minimal inflammatory response in hMSC chondrogenesis [180]. Yin et al. used cartilage ECM derived from goat to prepare a cell carrier for chondrogenic differentiation of hMSCs and cartilage formation [181]. They reported that
PDF
Album
Review
Published 11 Apr 2022

Lipid nanostructures for antioxidant delivery: a comparative preformulation study

  • Elisabetta Esposito,
  • Maddalena Sguizzato,
  • Markus Drechsler,
  • Paolo Mariani,
  • Federica Carducci,
  • Claudio Nastruzzi,
  • Giuseppe Valacchi and
  • Rita Cortesi

Beilstein J. Nanotechnol. 2019, 10, 1789–1801, doi:10.3762/bjnano.10.174

Graphical Abstract
  • oxidative stress [7]. The release of reactive oxygen species from tobacco smoke provokes a series of systemic immunomodulatory effects that leads to a compromised inflammatory response. These destructive mechanisms also affect collagen synthesis and the skin cellular reparative effects [8][9]. It has been
PDF
Album
Full Research Paper
Published 29 Aug 2019

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
PDF
Album
Review
Published 19 Sep 2018

Bioinspired self-healing materials: lessons from nature

  • Joseph C. Cremaldi and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2018, 9, 907–935, doi:10.3762/bjnano.9.85

Graphical Abstract
  • immediate area. The cellular component of the innate immune system refers to the leukocytes, white blood cells, tasked with responding to harmful microbes [14]. Each of these cell types has a specific duty. Mast cells control the inflammatory response in a wound by secreting/releasing specific compounds
PDF
Album
Review
Published 19 Mar 2018

Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages

  • Dimitri Vanhecke,
  • Dagmar A. Kuhn,
  • Dorleta Jimenez de Aberasturi,
  • Sandor Balog,
  • Ana Milosevic,
  • Dominic Urban,
  • Diana Peckys,
  • Niels de Jonge,
  • Wolfgang J. Parak,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2017, 8, 2396–2409, doi:10.3762/bjnano.8.239

Graphical Abstract
  • extend in the case of gold than for iron oxide [32]. This difference has also been reported to influence pro-inflammatory response of cells upon exposure of cells to NPs [33]. Also, the overall size is known to affect NP uptake by cells [34]. Thus, while two parameters were intentionally varied at the
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2017

Development of an advanced diagnostic concept for intestinal inflammation: molecular visualisation of nitric oxide in macrophages by functional poly(lactic-co-glycolic acid) microspheres

  • Kathleen Lange,
  • Christian Lautenschläger,
  • Maria Wallert,
  • Stefan Lorkowski,
  • Andreas Stallmach and
  • Alexander Schiller

Beilstein J. Nanotechnol. 2017, 8, 1637–1641, doi:10.3762/bjnano.8.163

Graphical Abstract
  • NO550-loaded microspheres. During the incubation with SNP, NO550 is converted to AZO550 that emits green fluorescence at 550 nm. NO550-loaded microspheres detect the inflammatory response of murine macrophage-like RAW 264.7 cells. CLSM images of LPS-stimulated and non-stimulated RAW 264.7 cells are
PDF
Album
Supp Info
Letter
Published 08 Aug 2017

Unraveling the neurotoxicity of titanium dioxide nanoparticles: focusing on molecular mechanisms

  • Bin Song,
  • Yanli Zhang,
  • Jia Liu,
  • Xiaoli Feng,
  • Ting Zhou and
  • Longquan Shao

Beilstein J. Nanotechnol. 2016, 7, 645–654, doi:10.3762/bjnano.7.57

Graphical Abstract
  • remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS), apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted
  • behavioral tests (novel object recognition test, forced swim test, and sucrose preference test) [26]. Inflammatory response Inflammatory response induced by TiO2 NPs is another major mechanism of neurotoxicity. When TiO2 NPs are transported to the brain, they interact with neurons and glial cells. Microglia
PDF
Review
Published 29 Apr 2016

Application of biclustering of gene expression data and gene set enrichment analysis methods to identify potentially disease causing nanomaterials

  • Andrew Williams and
  • Sabina Halappanavar

Beilstein J. Nanotechnol. 2015, 6, 2438–2448, doi:10.3762/bjnano.6.252

Graphical Abstract
  • unadjusted p-values were acute inflammatory response (p-value = 0.0023), extracellular region (p-value = 0.0067) and extracellular region part (p-value = 0.0083). The lung disease models that comprised this bicluster were the model for human small cell lung carcinoma (GSE18534), spontaneous lung tumor
  • GOs: response to wounding (FDR p-value = 0.0037), defense response (FDR p-value = 0.0063) and inflammatory response (FDR p-value = 0.0045). The ninth bicluster consisted of the down-regulated gene symbols (Actc1, Cfd, Ckm, Ckmt2, Cox7a1, Cox8b, Csrp3, Eno3, Fmo3, Myh6, Myl1, Myl7, Pln, Pon1, Smpx
PDF
Album
Full Research Paper
Published 21 Dec 2015

Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors

  • David E. Jones,
  • Hamidreza Ghandehari and
  • Julio C. Facelli

Beilstein J. Nanotechnol. 2015, 6, 1886–1896, doi:10.3762/bjnano.6.192

Graphical Abstract
  • materials with expected low levels of toxicity. Cytotoxicity can be determined by a gamut of in vitro toxicity assays focusing on a number of cellular parameters including cell viability, oxidative stress, genotoxicity, and inflammatory response [9]. In this paper, we focus on the cell viability to
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2015

The eNanoMapper database for nanomaterial safety information

  • Nina Jeliazkova,
  • Charalampos Chomenidis,
  • Philip Doganis,
  • Bengt Fadeel,
  • Roland Grafström,
  • Barry Hardy,
  • Janna Hastings,
  • Markus Hegi,
  • Vedrin Jeliazkov,
  • Nikolay Kochev,
  • Pekka Kohonen,
  • Cristian R. Munteanu,
  • Haralambos Sarimveis,
  • Bart Smeets,
  • Pantelis Sopasakis,
  • Georgia Tsiliki,
  • David Vorgrimmler and
  • Egon Willighagen

Beilstein J. Nanotechnol. 2015, 6, 1609–1634, doi:10.3762/bjnano.6.165

Graphical Abstract
  • . Among the factors in play in protein corona, biological interaction was chosen to be represented by cell association because of its relevance to biodistribution, inflammatory response potential, and in vivo toxicity. The eNanoMapper prototype described in this paper is able to capture this protein
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2015

Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model

  • Jennifer Y. Kasper,
  • Lisa Feiden,
  • Maria I. Hermanns,
  • Christoph Bantz,
  • Michael Maskos,
  • Ronald E. Unger and
  • C. James Kirkpatrick

Beilstein J. Nanotechnol. 2015, 6, 517–528, doi:10.3762/bjnano.6.54

Graphical Abstract
  • culture period. Keywords: air–blood barrier; cytotoxicity; inflammatory response; pulmonary surfactant; silica nanoparticles; Introduction Biological barriers of the human body which directly interface the external environment have, besides their actual physiological function, the vital task of
  • inflammatory response is observed for aSNP–plain (5 µg/mL: (1.1 ± 0.2)-fold of uc; 50 µg/mL: (6.8 ± 2.4)-fold and 100 µg/mL: (11 ± 5.4)-fold) and aSNP–NH2 (5 µg/mL: (0.9 ± 0.1)-fold of uc; 50 µg/mL: (7.2 ± 1.9)-fold and 100 µg/mL: (10.6 ± 2.7)-fold). For aSNP–COOH a slight but non-significant (in comparison to
PDF
Album
Full Research Paper
Published 20 Feb 2015

Proinflammatory and cytotoxic response to nanoparticles in precision-cut lung slices

  • Stephanie Hirn,
  • Nadine Haberl,
  • Kateryna Loza,
  • Matthias Epple,
  • Wolfgang G. Kreyling,
  • Barbara Rothen-Rutishauser,
  • Markus Rehberg and
  • Fritz Krombach

Beilstein J. Nanotechnol. 2014, 5, 2440–2449, doi:10.3762/bjnano.5.253

Graphical Abstract
  • zinc oxide (ZnO-NPs) nanoparticles as well as quartz particles were used because these materials have been previously shown in several in vitro and in vivo studies to induce a dose-dependent cytotoxic and inflammatory response. PCLS were exposed to three concentrations of 70 nm monodisperse
  • response in PCLS. However, these NPs induced cytotoxicity in human mesenchymal stem cells and peripheral blood mononuclear cells in vitro when incubated at a concentration of 25 µg/mL or higher [29][30]. Additionally, these NPs elicited a cytotoxic and inflammatory response in rat lungs 24 h after
  • , PCLS did not react with the release of proinflammatory cytokines upon exposure to the particles at the concentrations tested here. The low cytotoxic response to Ag-NPs, the absent cytotoxic response to quartz particles, and also the non-existent inflammatory response to all particles are in contrast to
PDF
Album
Full Research Paper
Published 18 Dec 2014

Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells

  • Claudia Strobel,
  • Martin Förster and
  • Ingrid Hilger

Beilstein J. Nanotechnol. 2014, 5, 1795–1807, doi:10.3762/bjnano.5.190

Graphical Abstract
  • -inflammatory response of exposed cells, and formation of reactive oxygen species (ROS). Furthermore, we also looked for effects of SiO2 nanoparticles on endothelial cells. Moreover, we considered if the nanoparticles’ effects on an immortalized cell line are comparable to a primary one. Results and Discussion
  • nanoparticles on the cytokine release could theoretically be associated with the production of ROS. Additionally, the observed ROS generation correlates with the cytokine release of HMEC-1 after 24 h of incubation. Since this was not the case after 72 h, a short-term effect of ROS on the pro-inflammatory
  • response machinery may be postulated. In HUVEC, no correlation between the ROS generation and the cytokine release was detectable. Hereto, other mechanisms seem to be responsible for these processes. Interestingly, the quantification of intracellular CeO2 nanoparticles (sample #A and #B) in HMEC-1, as was
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2014

In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics

  • Wolfgang G. Kreyling,
  • Stefanie Fertsch-Gapp,
  • Martin Schäffler,
  • Blair D. Johnston,
  • Nadine Haberl,
  • Christian Pfeiffer,
  • Jörg Diendorf,
  • Carsten Schleh,
  • Stephanie Hirn,
  • Manuela Semmler-Behnke,
  • Matthias Epple and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1699–1711, doi:10.3762/bjnano.5.180

Graphical Abstract
  • doses, on toxicological responses of rat lungs determined in broncho-alveolar lavage fluids by using the same endpoints as in the ex vivo studies described above [22]. Remarkably, the rather consistent findings of increased pro-inflammatory response in an AgNP dose-dependent manner as determined by
  • , mitochondrial changes did not change in between any of the groups of rats. Interestingly, the inflammatory response determined by TNF-α and IL-8 release increased significantly depending on the LPS dose in PCLS of rats that were exposed to suspensions containing 250 µg AgNP (Figure 8). It is quite striking that
PDF
Album
Review
Published 02 Oct 2014

The cell-type specific uptake of polymer-coated or micelle-embedded QDs and SPIOs does not provoke an acute pro-inflammatory response in the liver

  • Markus Heine,
  • Alexander Bartelt,
  • Oliver T. Bruns,
  • Denise Bargheer,
  • Artur Giemsa,
  • Barbara Freund,
  • Ludger Scheja,
  • Christian Waurisch,
  • Alexander Eychmüller,
  • Rudolph Reimer,
  • Horst Weller,
  • Peter Nielsen and
  • Joerg Heeren

Beilstein J. Nanotechnol. 2014, 5, 1432–1440, doi:10.3762/bjnano.5.155

Graphical Abstract
  • [27][28] can induce a tolerance to internalized gut-derived substances and usually does not support pro-inflammatory T cell effector responses [28][29][30]. Thus, it is quite unlikely that nanocrystals internalized by LSEC provoke an acute pro-inflammatory response. In order to test this hypothesis
PDF
Album
Full Research Paper
Published 02 Sep 2014

Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches

  • Fabian Herzog,
  • Kateryna Loza,
  • Sandor Balog,
  • Martin J. D. Clift,
  • Matthias Epple,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1357–1370, doi:10.3762/bjnano.5.149

Graphical Abstract
  • highest concentrations under submerged conditions promoted a cytotoxic and pro-inflammatory response after 24 h. Interestingly, when cell cultures were co-incubated with lipopolysaccharide (LPS), no synergistic inflammatory effects were observed. By using two different exposure scenarios it has been shown
  • (data not shown). Cytokine/chemokine secretion As described in [44], the release of the pro-inflammatory markers TNF-α and IL-8 was measured 4 and 24 h after exposure by enzyme linked immunosorbent assay (ELISA) to characterize the pro-inflammatory response of the cell culture lung model (Figure 5
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2014
Other Beilstein-Institut Open Science Activities